Format

Send to

Choose Destination
Chem Biol Interact. 2011 Sep 30;193(3):240-5. doi: 10.1016/j.cbi.2011.07.003. Epub 2011 Jul 28.

Augmentation of hepatic and renal oxidative stress and disrupted glucose homeostasis by monocrotophos in streptozotocin-induced diabetic rats.

Author information

1
Food Protectants and Infestation Control Department, Central Food Technological Research Institute, CSIR Lab, Mysore, India.

Abstract

Several recent studies have demonstrated that organophosphorus insecticides (OPI) possess the potential to disrupt glucose homeostasis leading to hyperglycemia in experimental animals. The propensity of OPI to induce hyperglycemia along with oxidative stress may have far-reaching consequences on diabetic outcomes and associated complications. The primary objective of this study was to assess the potential of monocrotophos (MCP), an extensively used OPI, on hepatic and renal oxidative stress markers and dysregulation of hepatic glucose homeostasis in experimentally induced diabetic rats. Rats rendered diabetic by a single dose of streptozotocin (60mg/kg b.w) were orally administered MCP (0.9mg/kg b.w/d for 5d). Monocrotophos per se caused only a marginal increase in blood glucose levels but significantly elevated the blood glucose levels and also disrupted glucose homeostasis by depleting liver glycogen content and increasing the gluconeogenetic enzyme activities in diabetic rats. Experimentally induced diabetes was also associated with alterations in antioxidant enzymes in liver and kidney. MCP markedly enhanced lipid peroxidation in kidney and altered the enzymatic antioxidant defense mechanisms in both liver and kidney of diabetic rats. Collectively our data provides evidence that MCP has the propensity to augment the oxidative stress and further disrupt glucose homeostasis in diabetic rats.

PMID:
21821013
DOI:
10.1016/j.cbi.2011.07.003
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center