Format

Send to

Choose Destination
N Biotechnol. 2012 Feb 15;29(3):379-86. doi: 10.1016/j.nbt.2011.07.002. Epub 2011 Jul 26.

Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol.

Author information

1
Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.

Abstract

Use of super strains exhibiting tolerance to high temperature, acidity and ethanol is a promising way to make ethanol production economically feasible. We describe here the breeding and performance of such a multiple-tolerant strain of Saccharomyces cerevisiae generated by a spore-to-cell hybridization technique without recombinant DNA technology. A heterothallic strain showing a high-temperature (41°C) tolerant (Htg(+)) phenotype, a derivative from a strain isolated from nature, was crossed with a homothallic strain displaying high-ethanol productivity (Hep(+)), a stock culture at the Thailand Institute of Scientific and Technological Research. The resultant hybrid TJ14 displayed ability to rapidly utilize glucose, and produced ethanol (46.6g/l) from 10% glucose fermentation medium at high temperature (41°C). Not only ethanol productivity at 41°C but also acid tolerance (Acd(+)) was improved in TJ14 as compared with its parental strains, enabling TJ14 to grow in liquid medium even at pH 3. TJ14 maintained high ethanol productivity (46.0g/l) from 10% glucose when fermentation was done under multiple-stress conditions (41°C and pH 3.5). Furthermore, when TJ14 was subjected to a repeated-batch fermentation scheme, the growth and ethanol production of TJ14 were maintained at excellent levels over ten cycles of fermentation. Thus, the multiple-stress (Htg(+) Hep(+) Acd(+)) resistant strain TJ14 should be useful for cost-effective bioethanol production under high-temperature and acidic conditions.

PMID:
21820088
DOI:
10.1016/j.nbt.2011.07.002
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center