Send to

Choose Destination
Nature. 2011 Aug 3;476(7358):96-100. doi: 10.1038/nature10237.

HIV-1 adaptation to NK-cell-mediated immune pressure.

Author information

Ragon Institute at MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, USA.


Natural killer (NK) cells have an important role in the control of viral infections, recognizing virally infected cells through a variety of activating and inhibitory receptors. Epidemiological and functional studies have recently suggested that NK cells can also contribute to the control of HIV-1 infection through recognition of virally infected cells by both activating and inhibitory killer immunoglobulin-like receptors (KIRs). However, it remains unknown whether NK cells can directly mediate antiviral immune pressure in vivo in humans. Here we describe KIR-associated amino-acid polymorphisms in the HIV-1 sequence of chronically infected individuals, on a population level. We show that these KIR-associated HIV-1 sequence polymorphisms can enhance the binding of inhibitory KIRs to HIV-1-infected CD4(+) T cells, and reduce the antiviral activity of KIR-positive NK cells. These data demonstrate that KIR-positive NK cells can place immunological pressure on HIV-1, and that the virus can evade such NK-cell-mediated immune pressure by selecting for sequence polymorphisms, as was previously described for virus-specific T cells and neutralizing antibodies. NK cells might therefore have a previously underappreciated role in contributing to viral evolution.

[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms


Grant support

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center