Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13106-11. doi: 10.1073/pnas.1107094108. Epub 2011 Aug 1.

Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine.

Author information

1
Department of Biomedical Engineering, Cornell University, 151 Weill Hall, Ithaca, NY 14853, USA.

Abstract

Lower back and neck pain are leading physical conditions for which patients see their doctors in the United States. The organ commonly implicated in this condition is the intervertebral disc (IVD), which frequently herniates, ruptures, or tears, often causing pain and limiting spinal mobility. To date, approaches for replacement of diseased IVD have been confined to purely mechanical devices designed to either eliminate or enable flexibility of the diseased motion segment. Here we present the evaluation of a living, tissue-engineered IVD composed of a gelatinous nucleus pulposus surrounded by an aligned collagenous annulus fibrosus in the caudal spine of athymic rats for up to 6 mo. When implanted into the rat caudal spine, tissue-engineered IVD maintained disc space height, produced de novo extracellular matrix, and integrated into the spine, yielding an intact motion segment with dynamic mechanical properties similar to that of native IVD. These studies demonstrate the feasibility of engineering a functional spinal motion segment and represent a critical step in developing biological therapies for degenerative disc disease.

PMID:
21808048
PMCID:
PMC3156186
DOI:
10.1073/pnas.1107094108
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center