Send to

Choose Destination
J Bacteriol. 2011 Oct;193(19):5231-41. doi: 10.1128/JB.05454-11. Epub 2011 Jul 29.

Rsp inhibits attachment and biofilm formation by repressing fnbA in Staphylococcus aureus MW2.

Author information

Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 511, Little Rock, AR 72205, USA.


Biofilms contribute to virulence of Staphylococcus aureus. Formation of biofilms is multifactorial, involving polysaccharide, protein, and DNA components, which are controlled by various regulators. Here we report that deletion of the rsp gene resulted in an increase in biofilm formation in strain MW2, suggesting that Rsp is a repressor of biofilm formation. Using SDS-PAGE, we found that Rsp profoundly affected cell surface and secreted proteins. The rsp gene was transcribed monocistronically, and the transcripts were most abundant at the exponential growth phase. Microarray analyses revealed that Rsp represses 75 genes, including 9 genes encoding cell wall-anchored proteins, and activates 22 genes, including 5 genes encoding secreted proteases. Among these genes, fnbA, fnbB, sasG, and spa (which encode cell wall-anchored proteins) and splABCD (which encode secreted proteases) have been implicated in biofilm formation. To deconvolute Rsp's contribution to biofilm formation, we analyzed deletion mutants of these genes either in the wild-type or in the rsp mutant background. We found that fnbA deletion in the rsp mutant restored biofilm formation to the wild-type level, indicating that FnbA plays a major role in Rsp regulation of biofilm formation. Further studies revealed that Rsp inhibited biofilm formation at the stage of primary attachment through repressing fnbA. Rsp belongs to the AraC/XylS family of regulatory proteins. We expressed the putative Rsp DNA binding domain (RspDBD) in Escherichia coli and showed that RspDBD was able to specifically bind to a short DNA fragment containing the fnbA promoter, suggesting that Rsp represses fnbA expression by direct DNA binding.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center