Send to

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 2011 Oct;193(19):5252-9. doi: 10.1128/JB.05337-11. Epub 2011 Jul 29.

UDP-glucuronic acid decarboxylases of Bacteroides fragilis and their prevalence in bacteria.

Author information

Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.


Xylose is rarely described as a component of bacterial glycans. UDP-xylose is the nucleotide-activated form necessary for incorporation of xylose into glycans and is synthesized by the decarboxylation of UDP-glucuronic acid (UDP-GlcA). Enzymes with UDP-GlcA decarboxylase activity include those that lead to the formation of UDP-xylose as the end product (Uxs type) and those synthesizing UDP-xylose as an intermediate (ArnA and RsU4kpxs types). In this report, we identify and confirm the activities of two Uxs-type UDP-GlcA decarboxylases of Bacteroides fragilis, designated BfUxs1 and BfUxs2. Bfuxs1 is located in a conserved region of the B. fragilis genome, whereas Bfuxs2 is in the heterogeneous capsular polysaccharide F (PSF) biosynthesis locus. Deletion of either gene separately does not result in the loss of a detectable phenotype, but deletion of both genes abrogates PSF synthesis, strongly suggesting that they are functional paralogs and that the B. fragilis NCTC 9343 PSF repeat unit contains xylose. UDP-GlcA decarboxylases are often annotated incorrectly as NAD-dependent epimerases/dehydratases; therefore, their prevalence in bacteria is underappreciated. Using available structural and mutational data, we devised a sequence pattern to detect bacterial genes encoding UDP-GlcA decarboxylase activity. We identified 826 predicted UDP-GlcA decarboxylase enzymes in diverse bacterial species, with the ArnA and RsU4kpxs types confined largely to proteobacterial species. These data suggest that xylose, or a monosaccharide requiring a UDP-xylose intermediate, is more prevalent in bacterial glycans than previously appreciated. Genes encoding BfUxs1-like enzymes are highly conserved in Bacteroides species, indicating that these abundant intestinal microbes may synthesize a conserved xylose-containing glycan.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center