Format

Send to

Choose Destination
Curr Biol. 2011 Aug 9;21(15):1277-81. doi: 10.1016/j.cub.2011.07.001. Epub 2011 Jul 28.

The Arabidopsis RWP-RK protein RKD4 triggers gene expression and pattern formation in early embryogenesis.

Author information

1
Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.

Abstract

Morphogenesis of seed plants commences with highly stereotypical cell division sequences in early embryogenesis [1, 2]. Although a small number of transcription factors and a mitogen-activated protein (MAP) kinase cascade have been implicated in this process [3-8], pattern formation in early embryogenesis remains poorly understood. We show here that the Arabidopsis RKD4, a member of the RWP-RK motif-containing putative transcription factors [9], is required for this process. Loss-of-function rkd4 mutants were defective in zygotic cell elongation, as well as subsequent cell division patterns. As expected from this mutant phenotype, RKD4 was transcribed preferentially in early embryos. RKD4 possessed functional characteristics of transcription factors and was able to ectopically induce early embryo-specific genes when overexpressed in seedlings. Strikingly, induced overexpression of RKD4 primed somatic cells for embryogenesis independently of external growth regulators. These results reveal that RKD4 is a novel key regulator of the earliest stage of plant development.

PMID:
21802301
DOI:
10.1016/j.cub.2011.07.001
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center