Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2012 Jan;1824(1):186-94. doi: 10.1016/j.bbapap.2011.07.001. Epub 2011 Jul 23.

Role of host cellular proteases in the pathogenesis of influenza and influenza-induced multiple organ failure.

Author information

1
Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Kuranmoto-cho, Tokushima, Japan. kido@ier.tokushima-u.ac.jp

Abstract

Influenza A virus (IAV) is one of the most common infectious pathogens in humans. Since the IVA genome does not have the processing protease for the viral hemagglutinin (HA) envelope glycoprotein precursors, entry of this virus into cells and infectious organ tropism of IAV are primarily determined by host cellular trypsin-type HA processing proteases. Several secretion-type HA processing proteases for seasonal IAV in the airway, and ubiquitously expressed furin and pro-protein convertases for highly pathogenic avian influenza (HPAI) virus, have been reported. Recently, other HA-processing proteases for seasonal IAV and HPAI have been identified in the membrane fraction. These proteases proteolytically activate viral multiplication at the time of viral entry and budding. In addition to the role of host cellular proteases in IAV pathogenicity, IAV infection results in marked upregulation of cellular trypsins and matrix metalloproteinase-9 in various organs and cells, particularly endothelial cells, through induced pro-inflammatory cytokines. These host cellular factors interact with each other as the influenza virus-cytokine-protease cycle, which is the major mechanism that induces vascular hyperpermeability and multiorgan failure in severe influenza. This mini-review discusses the roles of cellular proteases in the pathogenesis of IAV and highlights the molecular mechanisms of upregulation of trypsins as effective targets for the control of IAV infection. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.

PMID:
21801859
DOI:
10.1016/j.bbapap.2011.07.001
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center