Whole genome survey of the glutathione transferase family in the brown algal model Ectocarpus siliculosus

Mar Genomics. 2008 Sep-Dec;1(3-4):135-48. doi: 10.1016/j.margen.2009.01.003. Epub 2009 Mar 16.

Abstract

We report here an exhaustive analysis of the glutathione transferases (GSTs) in the model brown alga Ectocarpus siliculosus using available genomic resources. A genome survey revealed the presence of twelve cytosolic GSTs, belonging to the Sigma class, two pseudogenes, one GST of the Kappa class, and three microsomal GSTs of the MGST3 family of membrane associated protein involved in eicosanoid and glutathione metabolism. Gene structure and phylogenetic analyses demonstrated the partition of the Sigma GSTs into two clusters which have probably evolved by duplication events. Gene expression profiling was conducted after the addition of high concentrations of chemicals, such as H(2)O(2), herbicides, heavy metals, as well as fatty acid derivatives, in order to induce stress conditions and to monitor early response mechanisms. The results of these experiments suggested that E. siliculosus GST genes are recruited in different and specific conditions. In addition, heterologous expression in yeast of two E. siliculosus microsomal GST showed that these enzymes feature peroxidase rather than transferase activity. The potential involvement of E. siliculosus GST in the metabolism of oxygenated polyunsaturated fatty acids is discussed.