Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 2011 Oct;31(19):4129-43. doi: 10.1128/MCB.05723-11. Epub 2011 Jul 26.

Checkpoint kinase 1 prevents cell cycle exit linked to terminal cell differentiation.

Author information

  • 1National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-2753, USA.


Trophoblast stem (TS) cells proliferate in the presence of fibroblast growth factor 4, but in its absence, they differentiate into polyploid trophoblast giant (TG) cells that remain viable but nonproliferative. Differentiation is coincident with expression of the cyclin-dependent kinase (CDK)-specific inhibitors p21 and p57, of which p57 is essential for switching from mitotic cell cycles to endocycles. Here, we show that, in the absence of induced DNA damage, checkpoint kinase-1 (CHK1), an enzyme essential for preventing mitosis in response to DNA damage, functions as a mitogen-dependent protein kinase that prevents premature differentiation of TS cells into TG cells by suppressing expression of p21 and p57, but not p27, the CDK inhibitor that regulates mitotic cell cycles. CHK1 phosphorylates p21 and p57 proteins at specific sites, thereby targeting them for degradation by the 26S proteasome. TG cells lack CHK1, and restoring CHK1 activity in TG cells suppresses expression of p57 and restores mitosis. Thus, CHK1 is part of a "G2 restriction point" that prevents premature cell cycle exit in cells programmed for terminal differentiation, a role that CHK2 cannot play.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center