Format

Send to

Choose Destination
Appl Microbiol Biotechnol. 2012 Jan;93(2):787-96. doi: 10.1007/s00253-011-3485-y. Epub 2011 Jul 26.

Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum anthropi and Achromobacter sp.

Author information

1
G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia.

Abstract

Bacterial strains capable of utilizing methylphosphonic acid (MP) or glyphosate (GP) as the sole sources of phosphorus were isolated from soils contaminated with these organophosphonates. The strains isolated from MP-contaminated soils grew on MP and failed to grow on GP. One group of the isolates from GP-contaminated soils grew only on MP, while the other one grew on MP and GP. Strains Achromobacter sp. MPS 12 (VKM B-2694), MP degraders group, and Ochrobactrum anthropi GPK 3 (VKM B-2554D), GP degraders group, demonstrated the best degradative capabilities towards MP and GP, respectively, and were studied for the distribution of their organophosphonate catabolism systems. In Achromobacter sp. MPS 12, degradation of MP was catalyzed by C-P lyase incapable of degrading GP (C-P lyase I). Adaptation to growth on GP yielded the strain Achromobacter sp. MPS 12A, which retained its ability to degrade MP via C-P lyase I and was capable of degrading GP with formation of sarcosine, thus suggesting the involvement of a GP-specific C-P lyase II. O. anthropi GPK 3 also degraded MP via C-P lyase I, but degradation of GP in it was initiated by glyphosate oxidoreductase, which was followed by product transformation via the phosphonatase pathway.

PMID:
21789492
DOI:
10.1007/s00253-011-3485-y
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center