Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2012 Mar;1822(3):350-60. doi: 10.1016/j.bbadis.2011.06.016. Epub 2011 Jul 13.

Neurodegeneration with brain iron accumulation - clinical syndromes and neuroimaging.

Author information

1
Centre for Neurotranslational Research, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2. hyman.schipper@mcgill.ca

Abstract

Iron participates in a wide array of cellular functions and is essential for normal neural development and physiology. However, if inappropriately managed, the transition metal is capable of generating neurotoxic reactive oxygen species. A number of hereditary conditions perturb body iron homeostasis and some, collectively referred to as neurodegeneration with brain iron accumulation (NBIA), promote pathological deposition of the metal predominantly or exclusively within the central nervous system (CNS). In this article, we discuss seven NBIA disorders with emphasis on the clinical syndromes and neuroimaging. The latter primarily entails magnetic resonance scanning using iron-sensitive sequences. The conditions considered are Friedreich ataxia (FA), pantothenate kinase 2-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), FA2H-associated neurodegeneration (FAHN), Kufor-Rakeb disease (KRD), aceruloplasminemia, and neuroferritinopathy. An approach to differential diagnosis and the status of iron chelation therapy for several of these entities are presented. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.

PMID:
21782937
DOI:
10.1016/j.bbadis.2011.06.016
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center