Send to

Choose Destination
J Steroid Biochem Mol Biol. 1990 Dec 10;37(5):669-74.

A cAMP independent inhibitory action of high doses of forskolin in rat Leydig cells.

Author information

Section of Molecular Endocrinology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892.


In addition to well known direct stimulatory and potentiatory actions of forskolin, we have previously reported that low doses of this diterpene (10(-9), 10(-12) M) markedly inhibit the production of cAMP and testosterone in rat Leydig cells through a pertussis toxin sensitive G-protein (A. Khanum and M. L. Dufau, J. Biol. Chem. 261, 1986). A different type of inhibitory effect of forskolin is described in this study. Forskolin (10(-5) M) markedly stimulates basal adenylate cyclase activity (about 200%) in rat Leydig cell membranes and potentiates the stimulatory effect of gonadotropin (10(-9), 10(-7) M) on adenylate cyclase in presence or in absence of GTP (10(-5) M). Similarly a time-dependent stimulation of forskolin (10(-5) M) alone is noted on all cAMP pools and testosterone production. Using a supramaximal steroidogenic dose of hCG (0.26 nM) or choleragen (0.1 microM), forskolin potentiates the gonadotrophin and toxin-induced responses of all cAMP pools significantly while inhibiting testosterone production. Moreover, forskolin also inhibits 8-Bromo-cAMP stimulated steroidogenesis. In contrast, pregnenolone synthesis was not altered by the diterpene. We have demonstrated in this study that the inhibitory effect of high doses of forskolin on steroidogenesis is distal to cAMP generation, and resulted from a steroidogenic block residing beyond pregnenolone synthesis.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center