Send to

Choose Destination
Can J Microbiol. 2011 Jul;57(7):547-58. doi: 10.1139/W11-047. Epub 2011 Jul 20.

Two ATP phosphoribosyltransferase isozymes of Geobacter sulfurreducens contribute to growth in the presence or absence of histidine and under nitrogen fixation conditions.

Author information

Department of Microbiology, University of Massachusetts Amherst, USA.


Bacteria of the Geobacter clade possess two distinct ATP phosphoribosyltransferases encoded by hisG(L) and hisG(S)+hisZ to catalyze the first reaction of histidine biosynthesis. This very unusual redundancy was investigated by mutational analysis. The hisG(L), hisG(S), and hisZ genes of Geobacter sulfurreducens were deleted, effects on growth and histidine biosynthesis gene expression were evaluated, and deficiencies were complemented with plasmid-borne genes. Both hisG(L) and hisG(S)+hisZ encode functional ATP phosphoribosyltransferases. However, deletion of hisG(L) resulted in no growth defect, whereas deletion of hisG(S) delayed growth when histidine was not provided. Both deletions increased hisZ transcript abundance, and both ΔhisG(S) and ΔhisZ mutations increased hisG(L) transcript abundance. Growth with HisG(L) alone (due to deletion of either hisG(S) or hisZ) was better under nitrogen fixation conditions than when ammonium was provided. Deletion of hisZ caused growth defects under all conditions tested, with or without exogenous sources of histidine, with different patterns of histidine biosynthesis gene expression under each condition. Taken together, the data indicate that G. sulfurreducens depends primarily on the HisG(S)Z isozyme as an ATP phosphoribosyltransferase in histidine biosynthesis, and for other functions when histidine is available; however, HisG(L) also functions as ATP phosphoribosyltransferase, particularly during nitrogen fixation.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center