Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2011 Oct 15;58(4):1150-7. doi: 10.1016/j.neuroimage.2011.06.090. Epub 2011 Jul 12.

Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task.

Author information

1
Interdepartmental Neuroscience Program, Northwestern University, 320 E Superior St, Searle 5-474, Chicago, IL 60611, USA. egobel@u.northwestern.edu

Abstract

Learning of complex motor skills requires learning of component movements as well as the sequential structure of their order and timing. Using a Serial Interception Sequence Learning (SISL) task, participants learned a sequence of precisely timed interception responses through training with a repeating sequence. Following initial implicit learning of the repeating sequence, functional MRI data were collected during performance of that known sequence and compared with activity evoked during novel sequences of actions, novel timing patterns, or both. Reduced activity was observed during the practiced sequence in a distributed bilateral network including extrastriate occipital, parietal, and premotor cortical regions. These reductions in evoked activity likely reflect improved efficiency in visuospatial processing, spatio-motor integration, motor planning, and motor execution for the trained sequence, which is likely supported by nondeclarative skill learning. In addition, the practiced sequence evoked increased activity in the left ventral striatum and medial prefrontal cortex, while the posterior cingulate was more active during periods of better performance. Many prior studies of perceptual-motor skill learning have found increased activity in motor areas of the frontal cortex (e.g., motor and premotor cortex, SMA) and striatal areas (e.g., the putamen). The change in activity observed here (i.e., decreased activity across a cortical network) may reflect skill learning that is predominantly expressed through more accurate performance rather than decreased reaction time.

PMID:
21771663
PMCID:
PMC3171628
DOI:
10.1016/j.neuroimage.2011.06.090
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center