Format

Send to

Choose Destination
Free Radic Biol Med. 2011 Oct 1;51(7):1355-64. doi: 10.1016/j.freeradbiomed.2011.06.015. Epub 2011 Jun 24.

HSP70 mediates dissociation and reassociation of the 26S proteasome during adaptation to oxidative stress.

Author information

1
Institute of Nutrition, Department of Nutritional Toxicology, Friedrich Schiller University, Jena, Germany. tilman.grune@uni-jena.de

Abstract

We report an entirely new role for the HSP70 chaperone in dissociating 26S proteasome complexes (into free 20S proteasomes and bound 19S regulators), preserving 19S regulators, and reconstituting 26S proteasomes in the first 1-3h after mild oxidative stress. These responses, coupled with direct 20S proteasome activation by poly(ADP ribose) polymerase in the nucleus and by PA28αβ in the cytoplasm, instantly provide cells with increased capacity to degrade oxidatively damaged proteins and to survive the initial effects of stress exposure. Subsequent adaptive (hormetic) processes (3-24h after stress exposure), mediated by several signal transduction pathways and involving increased transcription/translation of 20S proteasomes, immunoproteasomes, and PA28αβ, abrogate the need for 26S proteasome dissociation. During this adaptive period, HSP70 releases its bound 19S regulators, 26S proteasomes are reconstituted, and ATP-stimulated proteolysis is restored. The 26S proteasome-dependent, and ATP-stimulated, turnover of ubiquitinylated proteins is essential for normal cell metabolism, and its restoration is required for successful stress adaptation.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center