Send to

Choose Destination
Mol Gen Genet. 1990 Sep;223(3):369-78.

Site-directed recombination in the genome of transgenic tobacco.

Author information

Agricultural Products Department, E.I. DuPont de Nemours and Co., Wilmington, Delaware 19880-0402.


The plant genome responds to the bacteriophage P1-derived loxP-Cre site-specific recombination system. Recombination took place at loxP sites stably integrated in the tobacco genome, indicating that the Cre recombinase protein, expressed by a chimeric gene also stably resident in the genome, was able to enter the nucleus and to locate a specific 34 bp DNA sequence. An excisional recombination event was monitored by the acquisition of kanamycin resistance, which resulted from the loss of a polyadenylation signal sequence that interrupted a chimeric neomycin phosphotransferase II gene. Molecular analysis confirmed that the excision had occurred. Recombination occurred when plants with the integrated loxP construction were stably re-transformed with a chimeric cre gene and when plants with the introduced loxP construction were cross-bred with those carrying the chimeric cre gene. As assayed phenotypically, site-specific recombination could be detected in 50%-100% of the plants containing both elements of the system. Kanamycin resistance was detected at 2-3 weeks after re-transformation and in the first leaf of hybrid seedlings. This demonstration of the effectiveness of the loxP-Cre system in plants provides the basis for development of this system for such purposes as directing site-specific integration and regulation of gene expression.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center