Format

Send to

Choose Destination
J Biomech. 2011 Sep 2;44(13):2383-7. doi: 10.1016/j.jbiomech.2011.06.034. Epub 2011 Jul 20.

Inter-laboratory variability in in vitro spinal segment flexibility testing.

Author information

1
University of Minnesota, Minneapolis, MN, USA.

Abstract

In vitro spine flexibility testing has been performed using a variety of laboratory-specific loading apparatuses and conditions, making test results across laboratories difficult to compare. The application of pure moments has been well established for spine flexibility testing, but to our knowledge there have been no attempts to quantify differences in range of motion (ROM) resulting from laboratory-specific loading apparatuses. Seven fresh-frozen lumbar cadaveric motion segments were tested intact at four independent laboratories. Unconstrained pure moments of 7.5 Nm were applied in each anatomic plane without an axial preload. At laboratories A and B, pure moments were applied using hydraulically actuated spinal loading fixtures with either a passive (A) or controlled (B) XY table. At laboratories C and D, pure moments were applied using a sliding (C) or fixed ring (D) cable-pulley system with a servohydraulic test frame. Three sinusoidal load-unload cycles were applied at laboratories A and B while a single quasistatic cycle was applied in 1.5 Nm increments at laboratories C and D. Non-contact motion measurement systems were used to quantify ROM. In all test directions, the ROM variability among donors was greater than single-donor ROM variability among laboratories. The maximum difference in average ROM between any two laboratories was 1.5° in flexion-extension, 1.3° in lateral bending and 1.1° in axial torsion. This was the first study to quantify ROM in a single group of spinal motion segments at four independent laboratories with varying pure moment systems. These data support our hypothesis that given a well-described test method, independent laboratories can produce similar biomechanical outcomes.

PMID:
21764061
DOI:
10.1016/j.jbiomech.2011.06.034
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center