Format

Send to

Choose Destination
Prostaglandins Other Lipid Mediat. 2011 Nov;96(1-4):37-40. doi: 10.1016/j.prostaglandins.2011.06.005. Epub 2011 Jul 6.

Regulation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) by non-steroidal anti-inflammatory drugs (NSAIDs).

Author information

1
Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA. htai1@uky.edu

Abstract

NSAIDs are known to be inhibitors of cyclooxygenase-2 (COX-2) accounting for their anti-inflammatory and anti-tumor activities. However, the anti-tumor activity cannot be totally attributed to their COX-2 inhibitory activity as these drugs can also inhibit the growth and tumor formation of COX-2-null cell lines. Several potential targets aside from COX-2 for NSAIDs have been proposed. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH), a key prostaglandin catabolic enzyme, was recently shown to be a tumor suppressor. Effects of NSAIDs on 15-PGDH expression were therefore studied. Flurbiprofen, indomethacin and other NSAIDs stimulated 15-PGDH activity in colon cancer HT29 cells as well as in lung cancer A549 cells and glioblastoma T98G cells. (R)-flurbiprofen and sulindac sulfone, COX-2 inactive analogs, also stimulated 15-PGDH activity indicating induction of 15-PGDH is independent of COX-2 inhibition. Stimulation of 15-PGDH expression and activity by NSAIDs was examined in detail in colon cancer HT29 cells using flurbiprofen as a stimulant. Flurbiprofen stimulated 15-PGDH expression and activity by increasing transcription and translation and by decreasing the turnover of 15-PGDH. Mechanism of stimulation of 15-PGDH expression is not clear. Protease(s) involved in the turnover of 15-PGDH remains to be identified. However, flurbiprofen down-regulated matrix metalloproteinase-9 (MMP-9) which was shown to degrade 15-PGDH, but up-regulated tissue inhibitor of metalloproteinase-1 (TIMP-1), an inhibitor of MMP-9 contributing further to a slower turnover of 15-PGDH. Taken together, NSAIDs may up-regulate 15-PGDH by increasing the protein expression as well as decreasing the turnover of 15-PGDH in cancer cells.

[Indexed for MEDLINE]

Publication type, MeSH terms, Substances

Publication type

MeSH terms

Substances

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center