Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2012 Feb;1818(2):330-6. doi: 10.1016/j.bbamem.2011.06.014. Epub 2011 Jul 1.

Side-chain oxysterols: from cells to membranes to molecules.

Author information

1
Diabetic Cardiovascular Disease Center, Washington University in St. Louis School of Medicine, USA.

Abstract

This review discusses the application of cellular biology, molecular biophysics, and computational simulation to understand membrane-mediated mechanisms by which oxysterols regulate cholesterol homeostasis. Side-chain oxysterols, which are produced enzymatically in vivo, are physiological regulators of cholesterol homeostasis and primarily serve as cellular signals for excess cholesterol. These oxysterols regulate cholesterol homeostasis through both transcriptional and non-transcriptional pathways; however, many molecular details of their interactions in these pathways are still not well understood. Cholesterol trafficking provides one mechanism for regulation. The current model of cholesterol trafficking regulation is based on the existence of two distinct cholesterol pools in the membrane: a low and a high availability/activity pool. It is proposed that the low availability/activity pool of cholesterol is integrated into tightly packing phospholipids and relatively inaccessible to water or cellular proteins, while the high availability cholesterol pool is more mobile in the membrane and is present in membranes where the phospholipids are not as compressed. Recent results suggest that oxysterols may promote cholesterol egress from membranes by shifting cholesterol from the low to the high activity pools. Furthermore, molecular simulations suggest a potential mechanism for oxysterol "activation" of cholesterol through its displacement in the membrane. This review discusses these results as well as several other important interactions between oxysterols and cholesterol in cellular and model lipid membranes. This article is part of a Special Issue entitled: Membrane protein structure and function.

PMID:
21745458
PMCID:
PMC3197895
DOI:
10.1016/j.bbamem.2011.06.014
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center