Format

Send to

Choose Destination
See comment in PubMed Commons below
J Phys Chem A. 2011 Aug 4;115(30):8511-9. doi: 10.1021/jp2028142. Epub 2011 Jul 14.

Carotenoids and β-cyclodextrin inclusion complexes: Raman spectroscopy and theoretical investigation.

Author information

1
NEEM - Núcleo de Espectroscopia e Estrutura Molecular, Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil.

Abstract

In the present study, the inclusion processes of β-carotene, astaxanthin, lycopene, and norbixin (NOR) into the β-cyclodextrin (β-CD) cavity were investigated by means of Raman spectroscopy and quantum mechanics calculations. The Raman ν(1) band assigned to C═C stretching was sensitive to the host-guest interaction and in general undergoes a blue shift (3-13 cm(-1)) after inclusion takes place, which is the consequence of the localization of single and double bonds. This is supported by the molecular modeling prediction, which inclusion complexes show the ν(1) band blue shifted by 1-8 cm(-1). The calculated complexation energies was small for most of derivatives and was found to be -11.1 kcal mol(-1) for inclusion of AST and +0.27 kcal mol(-1) for NOR. The stability order was qualitatively correlated to topological parameters accounting for the opening angle of the chain. This means that after inclusion the guest molecules assume a slightly more extended conformation, which enhances the host-guest contact, improving the interaction energy. The results discussed here clearly demonstrate the matrix effect on the carotenes' spectroscopic profile and should contribute to fully characterize the raw samples.

PMID:
21728366
DOI:
10.1021/jp2028142
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center