Send to

Choose Destination
See comment in PubMed Commons below
Nanotechnology. 2006 May 28;17(10):2590-4. doi: 10.1088/0957-4484/17/10/024. Epub 2006 Apr 28.

Integration of single-crystalline nanocolumns into highly ordered nanopore arrays.

Author information

Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, Department of Physics, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, People's Republic of China.


The arrangement of nanostructures into desired well-ordered architectures is crucial for the realization of functional nanodevices and has been the focus of current nanotechnology. Existing physical and chemical approaches have the ability to assemble nanostructures, but it is still a challenge to arrange basic nanostructures into a highly ordered designed pattern. Here, we report a novel method to integrate tin-doped indium oxide single-crystalline nanocolumns into highly ordered two-dimensional nanopore patterns through radio-frequency magnetron sputtering by the aid of porous alumina membranes (PAMs). We have further demonstrated that the morphology of the assembled nanopore arrays is controllable by adjusting either the PAM configurations or sputtering conditions. Our present method provides the possibility of a general approach for nanounit integration, and these assembled regular nanopore arrays pave the way for the application of novel filters and sensors.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOP Publishing Ltd.
    Loading ...
    Support Center