Send to

Choose Destination
See comment in PubMed Commons below
Nanotechnology. 2006 Nov 28;17(22):5627-31. doi: 10.1088/0957-4484/17/22/016. Epub 2006 Oct 26.

Comparative analysis of cavity length-dependent temperature sensitivity of GaInNAs quantum dot lasers and quantum well lasers.

Author information

School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Republic of Singapore.


Self-assembled GaInNAs/GaAsN single-layer quantum dot (QD) lasers, grown using solid source molecular beam epitaxy, have been fabricated and characterized. A high output power of 40.76 mW/facet was obtained from a GaInNAs QD laser with dimensions of 50 × 700 µm(2) at 10 °C. Temperature-dependent measurements were carried out on the GaInNAs QD lasers of different cavity lengths. For comparison, temperature-dependent measurements were also performed on GaInNAs single quantum well (SQW) and triple QW (TQW) lasers. Unlike the relationship between cavity length and T(0) in GaInNAs SQW/TQW lasers, longer-cavity GaInNAs QD lasers (50 × 1700 µm(2)) showed a lower T(0) of 65.1 K, which is believed to be due to non-uniformity of the GaInNAs QD layer. Furthermore, compared to GaInNAs SQW lasers, a significant improvement in temperature sensitivity was observed in the TQW GaInNAs lasers. This is attributed to a reduction in the relative contribution of the Auger recombination current and suppression of heavy-hole leakage in the TQW laser structures.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOP Publishing Ltd.
    Loading ...
    Support Center