Send to

Choose Destination
See comment in PubMed Commons below
Radiother Oncol. 2012 Feb;102(2):206-9. doi: 10.1016/j.radonc.2011.06.013. Epub 2011 Jul 2.

Dosimetric consequences of rotational errors in radiation therapy of pediatric brain tumor patients.

Author information

Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, TN 38120, USA.



To quantify the rotational offsets and estimate the dose effect of rotation on the target volume and normal tissues in children with brain tumor.


Twenty-one pediatric patients with brain tumors were included in this study. Cone-beam CT was performed before each treatment and at the end of every other treatment. Translational offsets were corrected before the treatment. An offline analysis was performed to quantify rotational errors. The treatment plans were altered and recalculated to simulate a rotation of 2° and 4°, and the dose changes were quantified.


1016 CBCT datasets were analyzed for this report. The mean of the rotations were not meaningfully different from zero. 18.1% of the fractions had rotations with a magnitude ≥2°, 5.0% had rotations ≥3° and 0.9% had rotations ≥4°. For the 2° rotational simulation, the gEUD values of the PTV and critical structures changed by less than 2%. For the 4° simulation, parallel type normal structures had minor changes (<2%), but serial type normal structures and the PTV had changes of 10% and 5%, respectively.


The majority of rotational errors observed were less than 1°. A rotational error of 2° produced negligible changes in the gEUD to critical structures or target volumes. Rotational errors ≥4° produced undesirable results, therefore, at a minimum, errors >2° should be corrected.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center