Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Plant Pathol. 2011 Oct;12(8):715-30. doi: 10.1111/j.1364-3703.2011.00706.x. Epub 2011 Feb 21.

Comparative analysis of the XopD type III secretion (T3S) effector family in plant pathogenic bacteria.

Author information

1
Department of Biology, Stanford University, Stanford, CA 94305-5020, USA.

Abstract

XopD is a type III effector protein that is required for Xanthomonas campestris pathovar vesicatoria (Xcv) growth in tomato. It is a modular protein consisting of an N-terminal DNA-binding domain, two ethylene-responsive element binding factor-associated amphiphilic repression (EAR) transcriptional repressor motifs and a C-terminal small ubiquitin-related modifier (SUMO) protease. In tomato, XopD functions as a transcriptional repressor, resulting in the suppression of defence responses at late stages of infection. A survey of available genome sequences for phytopathogenic bacteria revealed that XopD homologues are limited to species within three genera of Proteobacteria--Xanthomonas, Acidovorax and Pseudomonas. Although the EAR motif(s) and SUMO protease domain are conserved in all XopD-like proteins, variation exists in the length and sequence identity of the N-terminal domains. Comparative analysis of the DNA sequences surrounding xopD and xopD-like genes led to revised annotation of the xopD gene. Edman degradation sequence analysis and functional complementation studies confirmed that the xopD gene from Xcv encodes a 760-amino-acid protein with a longer N-terminal domain than previously predicted. None of the XopD-like proteins studied complemented Xcv ΔxopD mutant phenotypes in tomato leaves, suggesting that the N-terminus of XopD defines functional specificity. Xcv ΔxopD strains expressing chimeric fusion proteins containing the N-terminus of XopD fused to the EAR motif(s) and SUMO protease domain of the XopD-like protein from X. campestris pathovar campestris strain B100 were fully virulent in tomato, demonstrating that the N-terminus of XopD controls specificity in tomato.

PMID:
21726373
PMCID:
PMC3166429
DOI:
10.1111/j.1364-3703.2011.00706.x
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center