Format

Send to

Choose Destination
See comment in PubMed Commons below
J Proteome Res. 2011 Sep 2;10(9):4334-41. doi: 10.1021/pr200156b. Epub 2011 Jul 21.

Improving SRM assay development: a global comparison between triple quadrupole, ion trap, and higher energy CID peptide fragmentation spectra.

Author information

1
Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.

Abstract

In proteomics, selected reaction monitoring (SRM) is rapidly gaining importance for targeted protein quantification. The triple quadrupole mass analyzers used in SRM assays allow for levels of specificity and sensitivity hard to accomplish by more standard shotgun proteomics experiments. Often, an SRM assay is built by in silico prediction of transitions and/or extraction of peptide precursor and fragment ions from a spectral library. Spectral libraries are typically generated from nonideal ion trap based shotgun proteomics experiments or synthetic peptide libraries, consuming considerable time and effort. Here, we investigate the usability of beam type CID (or "higher energy CID" (HCD)) peptide fragmentation spectra, as acquired using an Orbitrap Velos, to facilitate SRM assay development. Therefore, peptide fragmentation spectra, obtained by ion-trap CID, triple-quadrupole CID (QqQ-CID) and Orbitrap HCD, originating from digested cellular lysates, were compared. Spectral comparison and a dedicated correlation algorithm indicated significantly higher similarity between QqQ-CID and HCD fragmentation spectra than between QqQ-CID and ion trap-CID spectra. SRM transitions generated using a constructed HCD spectral library increased SRM assay sensitivity up to 2-fold, when compared to the use of a library created from more conventionally used ion trap-CID spectra, showing that HCD spectra can assist SRM assay development.

PMID:
21726076
DOI:
10.1021/pr200156b
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center