Format

Send to

Choose Destination
Acta Neurochir Suppl. 2011;111:237-41. doi: 10.1007/978-3-7091-0693-8_40.

Protective effect of hydrogen gas therapy after germinal matrix hemorrhage in neonatal rats.

Author information

1
Department of Physiology, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA.

Abstract

BACKGROUND:

Germinal matrix hemorrhage (GMH) is a neurological disease of very low birth weight premature infants leading to post-hemorrhagic hydrocephalus, cerebral palsy, and mental retardation. Hydrogen (H2) is a potent antioxidant shown to selectively reverse cytotoxic oxygen-radical injury in the brain. This study investigated the therapeutic effect of hydrogen gas after neonatal GMH injury.

METHODS:

Neonatal rats underwent stereotaxic infusion of clostridial collagenase into the right germinal matrix brain region. Cognitive function was assessed at 3 weeks, and then sensorimotor function, cerebral, cardiac and splenic growths were measured 1 week thereafter.

RESULTS:

Hydrogen gas inhalation markedly suppressed mental retardation and cerebral palsy outcomes in rats at the juvenile developmental stage. The administration of H2 gas, early after neonatal GMH, also normalized the brain atrophy, splenomegaly and cardiac hypertrophy 1 month after injury.

CONCLUSION:

This study supports the role of cytotoxic oxygen-radical injury in early neonatal GMH. Hydrogen gas inhalation is an effective strategy to help protect the infant brain from the post-hemorrhagic consequences of brain atrophy, mental retardation and cerebral palsy. Further studies are necessary to determine the mechanistic basis of these protective effects.

PMID:
21725762
PMCID:
PMC3569066
DOI:
10.1007/978-3-7091-0693-8_40
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center