Send to

Choose Destination
Eur J Biochem. 1990 Oct 5;193(1):1-18.

myo-inositol metabolites as cellular signals.

Author information

Department of Biochemistry, University of Dundee, Scotland.


The discovery of the second-messenger functions of inositol 1,4,5-trisphosphate and diacylglycerol, the products of hormone-stimulated inositol phospholipid hydrolysis, marked a turning point in studies of hormone function. This review focuses on the myo-inositol moiety which is involved in an increasingly complex network of metabolic interconversions, myo-Inositol metabolites identified in eukaryotic cells include at least six glycerophospholipid isomers and some 25 distinct inositol phosphates which differ in the number and distribution of phosphate groups around the inositol ring. This apparent complexity can be simplified by assigning groups of myo-inositol metabolites to distinct functional compartments. For example, the phosphatidylinositol 4-kinase pathway functions to generate inositol phospholipids that are substrates for hormone-sensitive forms of inositol-phospholipid phospholipase C, whilst the newly discovered phosphatidylinositol 3-kinase pathway generates lipids that are resistant to such enzymes and may function directly as novel mitogenic signals. Inositol phosphate metabolism functions to terminate the second-messenger activity of inositol 1,4,5-trisphosphate, to recycle the latter's myo-inositol moiety and, perhaps, to generate additional signal molecules such as inositol 1,3,4,5-tetrakisphosphate, inositol pentakisphosphate and inositol hexakisphosphate. In addition to providing a more complete picture of the pathways of myo-inositol metabolism, recent studies have made rapid progress in understanding the molecular basis underlying hormonal stimulation of inositol-phospholipid-specific phospholipase C and inositol 1,4,5-trisphosphate-mediated Ca2+ mobilisation.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center