Format

Send to

Choose Destination
Neuropsychopharmacology. 2011 Oct;36(11):2233-43. doi: 10.1038/npp.2011.109. Epub 2011 Jun 29.

N-acetyl cysteine treatment rescues cognitive deficits induced by mitochondrial dysfunction in G72/G30 transgenic mice.

Author information

1
Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany.

Abstract

Genetic studies have implicated the evolutionary novel, anthropoid primate-specific gene locus G72/G30 in psychiatric diseases. This gene encodes the protein LG72 that has been discussed to function as a putative activator of the peroxisomal enzyme D-amino-acid-oxidase (DAO) and as a mitochondrial protein. We recently generated 'humanized' bacterial artificial chromosome transgenic mice (G72Tg) expressing G72 transcripts in cells throughout the brain. These mice exhibit several behavioral phenotypes related to psychiatric diseases. Here we show that G72Tg mice have a reduced activity of mitochondrial complex I, with a concomitantly increased production of reactive oxygen species. Affected neurons display deficits in short-term plasticity and an impaired capability to sustain synaptic activity. These deficits lead to an impairment in spatial memory, which can be rescued by pharmacological treatment with the glutathione precursor N-acetyl cysteine. Our results implicate LG72-induced mitochondrial and synaptic defects as a possible pathomechanism of psychiatric disorders.

PMID:
21716263
PMCID:
PMC3176560
DOI:
10.1038/npp.2011.109
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center