Send to

Choose Destination
Anesthesiology. 2011 Aug;115(2):353-63. doi: 10.1097/ALN.0b013e318224cc1f.

Activation of opioid μ-receptors in the commissural subdivision of the nucleus tractus solitarius abolishes the ventilatory response to hypoxia in anesthetized rats.

Author information

Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA.



: The commissural subnucleus of the nucleus tractus solitarius (comNTS) is a key region in the brainstem responsible for the hypoxic ventilatory response (HVR) because it contains the input terminals of the carotid chemoreceptor. Because opioids inhibit the HVR via activating central μ-receptors that are expressed abundantly in the comNTS, the authors of the current study asked whether activating local μ-receptors attenuated the carotid body-mediated HVR.


: To primarily stimulate the carotid body, brief hypoxia (100% N2) and hypercapnia (15% CO2) for 10 s and/or intracarotid injection of NaCN (10 μg/100 μl) were performed in anesthetized and spontaneously breathing rats. These stimulations were repeated after: (1) microinjecting three doses of μ-receptor agonist [d-Ala2, N-Me-Phe4, Gly-ol]-Enkephalin (DAMGO) (approximately 3.5 nl) into the comNTS; (2) carotid body denervation; and (3) systemic administration of DAMGO (300 μg/kg) without and with previous intracomNTS injection of d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH2, a μ-receptor antagonist.


: Study results showed that DAMGO at 0.25 and 2.5, but not 0.025 mM, caused a similar decrease in baseline ventilation (approximately 12%). DAMGO at 0.25 mM largely reduced (64%) the HVR, whereas DAMGO at 2.5 mM abolished the HVR (and the VE response to NaCN) and moderately attenuated (31%) the hypercapnic ventilatory response. Interestingly, similar HVR abolition and depression of the hypercapnic ventilatory response were observed after carotid body denervation. Blocking comNTS μ-receptors by d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH2 significantly attenuated the HVR depression by systemic DAMGO with little change in the DAMGO modulatory effects on baseline ventilation and the hypercapnic ventilatory response.


: The data suggest that opioids within the comNTS, via acting on μ-receptors, are able to abolish the HVR by affecting the afferent pathway of the carotid chemoreceptor.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center