Format

Send to

Choose Destination
J Biol Chem. 2011 Aug 19;286(33):28833-43. doi: 10.1074/jbc.M111.233932. Epub 2011 Jun 27.

Histone deacetylase 9 deficiency protects against effector T cell-mediated systemic autoimmunity.

Author information

1
Section on Rheumatology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, UAS.

Abstract

Co-repressor histone deacetylase 9 (HDAC9) plays a key role in the development and differentiation of many types of cells, including regulatory T cells. However, the biological function of HDAC9 in T effector cells is unknown. Systemic autoimmune diseases like lupus, diabetes, and rheumatoid arthritis have dysfunctional effector T cells. To determine the role of HDAC9 in systemic autoimmunity, we created MRL/lpr mice with HDAC9 deficiency that have aberrant effector T cell function. HDAC9 deficiency led to decreased lympho-proliferation, inflammation, autoantibody production, and increased survival in MRL/lpr mice. HDAC9-deficient mice manifested Th2 polarization, decreased T effector follicular cells positive for inducible co-stimulator, and activated T cells in vivo compared with HDAC9-intact MRL/lpr mice. HDAC9 deficiency also resulted in increased GATA3 and roquin and decreased BCL6 gene expression. HDAC9 deficiency was associated with increased site-specific lysine histone acetylation at H3 (H3K9, H3K14, and H3K18) globally that was localized to IL-4, roquin, and peroxisome proliferator-activated receptor-γ promoters with increased gene expression, respectively. In kidney and spleen, HDAC9 deficiency decreased inflammation and cytokine and chemokine production due to peroxisome proliferator-activated receptor γ overexpression. These findings suggest that HDAC9 acts as an epigenetic switch in effector T cell-mediated systemic autoimmunity.

PMID:
21708950
PMCID:
PMC3190691
DOI:
10.1074/jbc.M111.233932
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center