Format

Send to

Choose Destination
See comment in PubMed Commons below
Oncogene. 2012 Jan 26;31(4):507-17. doi: 10.1038/onc.2011.248. Epub 2011 Jun 27.

Methylation-mediated repression of microRNA-143 enhances MLL-AF4 oncogene expression.

Author information

1
Department of Hematology, Chinese PLA General Hospital, Beijing, China.

Abstract

Fusion proteins containing the amino terminus of mixed lineage leukemia (MLL) are common in acute lymphoblastic leukemia (ALL) due to translocations. The MLL-AF4 fusion protein is generated by the translocation t(4;11)(q21;q23), and t(4;11)-positive ALL patients (MLL-AF4 ALL), have a notoriously poorer prognosis compared with patients with other MLL-associated leukemias. The detailed role of this fusion protein in leukemogenesis is not well understood. MicroRNAs (miRNAs) targeting the AF4 3' untranslated regions may modulate MLL-AF4 fusion protein levels, raising the question of whether regulation of these miRNAs are involved in the progression of MLL-AF4 ALL. In this study, we show that miR-143 was identified as a regulator of MLL-AF4 expression in MLL-AF4 ALL samples. Restoration of miR-143 in MLL-AF4-positive RS4;11 and MV4-11 cells induced apoptosis, negatively contributing to leukemia cell growth by reducing MLL-AF4 fusion protein levels. Furthermore, miR-143 was epigenetically repressed by promoter hypermethylation in MLL-AF4-positive primary blasts and cell lines, but not in normal bone marrow cells and MLL-AF4-negative primary blasts, which was directly associated with expression of the MLL-AF4 oncogene. This is the first study to show that miR-143 functions as a tumor suppressor in MLL-AF4 B-cell ALL. These data reveal the therapeutic promise of upregulating miR-143 expression for MLL-AF4 B-cell ALL.

PMID:
21706045
DOI:
10.1038/onc.2011.248
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center