Format

Send to

Choose Destination
See comment in PubMed Commons below
J Phys Condens Matter. 2009 Nov 11;21(45):452202. doi: 10.1088/0953-8984/21/45/452202. Epub 2009 Oct 9.

Non-collinearity and spin frustration in the itinerant kagome ferromagnet Fe(3)Sn(2).

Author information

1
Chemistry Department, UCL, 20 Gordon Street, London WC1H 0AJ, UK.

Abstract

Frustrated itinerant ferromagnets, with non-collinear static spin structures, are an exciting class of material as their spin chirality can introduce a Berry phase in the electronic scattering and lead to exotic electronic phenomena such as the anomalous Hall effect (AHE). This study presents a reexamination of the magnetic properties of Fe(3)Sn(2), a metallic ferromagnet, based on the two-dimensional kagome bilayer structure. Previously thought of as a conventional ferromagnet, we show using a combination of SQUID (superconducting quantum interference device) measurements, symmetry analysis and powder neutron diffraction that Fe(3)Sn(2) is a frustrated ferromagnet with a temperature-dependent non-collinear spin structure. The complexity of the magnetic interactions is further evidenced by a re-entrant spin glass transition ([Formula: see text] K) at temperatures far below the main ferromagnetic transition (T(C) = 640 K). Fe(3)Sn(2) therefore provides a rare example of a frustrated itinerant ferromagnet. Further, as well as being of great fundamental interest our studies highlight the potential of Fe(3)Sn(2) for practical application in spintronics technology, as the AHE arising from the ferromagnetism in this material is expected to be enhanced by the coupling between the conduction electrons and the non-trivial magnetic structure over an exceptionally wide temperature range.

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOP Publishing Ltd.
    Loading ...
    Support Center