Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Plant. 2011 Jul;4(4):626-34. doi: 10.1093/mp/ssr042. Epub 2011 Jun 20.

Paradigms and paradox in the ethylene signaling pathway and interaction network.

Author information

1
State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.

Abstract

Phytohormone ethylene plays pivotal roles in plant response to developmental and environmental signals. During the past few years, the emerging evidence has led us to a new understanding of the signaling mechanisms and regulatory networks of the ethylene action. In this review, we focus on the major advances made in the past three years, particularly the findings leading to new paradigms and the observations under debate. With the recent demonstration of the regulation of the protein stability of numerous key signaling components including EIN3, EIL1, EIN2, ETR2, EBF1/EBF2, and ETP1/ETP2, we highlight proteasome-dependent protein degradation as an essential regulatory mechanism that is widely adopted in the ethylene signaling pathway. We also discuss the implication of the negative feedback mechanism in the ethylene signaling pathway in light of ethylene-induced ETR2 and EBF2 gene expression. Meanwhile, we summarize the controversy on the involvement of MKK9-MPK3/6 cascade in the ethylene signaling versus biosynthesis pathway, and discuss the possible role of this MAPK module in the ethylene action. Finally, we describe the complex interactions between ethylene and other signaling pathways including auxin, light, and plant innate immunity, and propose that EIN3/EIL1 act as a convergence point in the ethylene-initiated signaling network.

PMID:
21690206
DOI:
10.1093/mp/ssr042
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center