Format

Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2011 Jul 15;187(2):805-16. doi: 10.4049/jimmunol.1003314. Epub 2011 Jun 17.

Impairment of immunological synapse formation in adaptively tolerant T cells.

Author information

1
Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0420, USA.

Abstract

Adaptive tolerance is a hyporesponsive state in which lymphocyte Ag receptor signaling becomes desensitized after prolonged in vivo encounter with Ag. The molecular mechanisms underlying this hyporesponsive state in T cells are not fully understood, although a major signaling block has been shown to be present at the level of ZAP70 phosphorylation of linker for activation of T cells (LAT). In this study, we investigated the ability of adaptively tolerant mouse T cells to form conjugates with Ag-bearing APCs and to translocate signaling molecules into the interface between the T cells and APCs. Compared with naive or preactivated T cells, adaptively tolerant T cells showed no dramatic impairment in their formation of conjugates with APCs. In contrast, there was a large impairment in immunological synapse formation. Adaptively tolerant T cells were defective in their translocation of signaling molecules, such as ZAP70, LAT, and phospholipase C γ1, into the T cell-APC contact sites. Although Ag-induced activation of VAV1 was normal, VAV's recruitment into the synapse was also impaired. Interestingly, expressions of both IL-2-inducible T cell kinase and growth factor receptor-bound protein 2-related adaptor downstream of SHC were decreased by 60-80% in adaptively tolerant T cells. These decreases, in addition to the impairment in LAT phosphorylation by ZAP70, appear to be the major impediments to the phosphorylation of SLP76 (SRC homology 2 domain-containing leukocyte protein of 76 kDa) and the recruitment of VAV1, which are important for stable immunological synapse formation.

PMID:
21685322
PMCID:
PMC3131438
DOI:
10.4049/jimmunol.1003314
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center