Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell Cycle. 2011 Jun 15;10(12):1928-35. Epub 2011 Jun 15.

Unique and redundant functions of ATM and DNA-PKcs during V(D)J recombination.

Author information

1
Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.

Abstract

Lymphocyte antigen receptor genes are assembled through the process of V(D)J recombination, during which pairwise DNA cleavage of gene segments results in the formation of four DNA ends that are resolved into a coding joint and a signal joint. The joining of these DNA ends occurs in G1-phase lymphocytes and is mediated by the non-homologous end-joining (NHEJ) pathway of DNA double-strand break (DSB) repair. The ataxia telangiectasia mutated (ATM) and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), two related kinases, both function in the repair of DNA breaks generated during antigen receptor gene assembly. Although these proteins have unique functions during coding joint formation, their activities in signal joint formation, if any, have been less clear. However, two recent studies demonstrated that ATM and DNA-PKcs have overlapping activities important for signal joint formation. Here, we discuss the unique and shared activities of the ATM and DNA-PKcs kinases during V(D)J recombination, a process that is essential for lymphocyte development and the diversification of antigen receptors.

PMID:
21673501
PMCID:
PMC3154416
DOI:
10.4161/cc.10.12.16011
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis Icon for PubMed Central
    Loading ...
    Support Center