Format

Send to

Choose Destination
See comment in PubMed Commons below
Neurochem Int. 2011 Aug;59(1):28-38. doi: 10.1016/j.neuint.2011.03.020. Epub 2011 Jun 13.

Tissue concentration changes of amino acids and biogenic amines in the central nervous system of mice with experimental autoimmune encephalomyelitis (EAE).

Author information

1
Centre for Neuroscience, University of Alberta, Edmonton, AB, Canada.

Abstract

We have characterized the changes in tissue concentrations of amino acids and biogenic amines in the central nervous system (CNS) of mice with MOG(35-55)-induced experimental autoimmune encephalomyelitis (EAE), an animal model commonly used to study multiple sclerosis (MS). High performance liquid chromatography was used to analyse tissue samples from five regions of the CNS at the onset, peak and chronic phase of MOG(35-55) EAE. Our analysis includes the evaluation of several newly examined amino acids including d-serine, and the inter-relations between the intraspinal concentration changes of different amino acids and biogenic amines during EAE. Our results confirm many of the findings from similar studies using different variants of the EAE model as well as those examining changes in amino acid and biogenic amine levels in the cerebrospinal fluid (CSF) of MS patients. However, several notable differences were observed between mice with MOG(35-55)-induced EAE with findings from human studies and other EAE models. In addition, our analysis has identified strong correlations between different amino acids and biogenic amines that appear to change in two distinct groups during EAE. Group I analyte concentrations are increased at EAE onset and peak but then decrease in the chronic phase with a large degree of variability. Group II is composed of amino acids and biogenic amines that change in a progressive manner during EAE. The altered levels of these amino acids and biogenic amines in the disease may represent a critical pathway leading to neurodegenerative processes that are now recognized to occur in EAE and MS.

PMID:
21672584
DOI:
10.1016/j.neuint.2011.03.020
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center