Format

Send to

Choose Destination
J Neurosci Methods. 2011 Aug 30;200(1):1-13. doi: 10.1016/j.jneumeth.2011.05.029. Epub 2011 Jun 13.

An embryonic culture system for the investigation of striatal medium spiny neuron dendritic spine development and plasticity.

Author information

1
Graduate Program in Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA.

Abstract

Dendritic spines of striatal Medium Spiny Neurons (MSNs) receive converging dopaminergic and glutamatergic inputs. These spines undergo experience-dependent structural plasticity following repeated drug administration and during disease states like Huntington's and Parkinson's. Thus, understanding the molecular mechanisms leading to structural plasticity is an important step toward establishing a clear relationship between spine structure and function, and will ultimately contribute to understanding how changes in dendritic spine structure relate to behaviors or diseases. One major difficulty faced when studying MSN development is the lack of a detailed, standardized in vitro model system that produces MSNs with in vivo-like morphologies. For example, unlike cultured pyramidal neurons, MSNs grown in mono-cultures display stunted dendritic arborization and fail to develop a full cohort of mature dendritic spines. Here we report the generation of an embryonic mouse cortical-striatal co-culture that generates high cell yields from a single embryo. Unlike MSNs in striatal mono-culture, MSNs in co-culture develop in vivo-like morphologies and high densities of dendritic spines. Morphological identification of co-cultured MSNs expressing a soluble fluorescent protein can be confirmed by immunochemical detection of DARPP-32 (Dopamine and cyclic AMP regulated phosphoprotein of 32kDa). Additionally, co-cultured MSN spines contain PSD-95 puncta and are apposed to SV2 puncta, indicating the spines express synaptic machinery. Finally, whole-cell recordings of co-cultured MSNs exhibit higher mEPSC frequency compared to mono-cultured MSNs, suggesting that the spines are functionally mature. These studies establish that this co-culture system is suitable for studying the morphological and physiological development and function of MSN dendritic spines.

PMID:
21672554
PMCID:
PMC3148294
DOI:
10.1016/j.jneumeth.2011.05.029
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center