Format

Send to

Choose Destination
Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):E323-31. doi: 10.1073/pnas.1101892108. Epub 2011 Jun 13.

An antigenic peptide produced by reverse splicing and double asparagine deamidation.

Author information

1
Ludwig Institute for Cancer Research, Brussels Branch, Université Catholique de Louvain, B-1200 Brussels, Belgium.

Abstract

A variety of unconventional translational and posttranslational mechanisms contribute to the production of antigenic peptides, thereby increasing the diversity of the peptide repertoire presented by MHC class I molecules. Here, we describe a class I-restricted peptide that combines several posttranslational modifications. It is derived from tyrosinase and recognized by tumor-infiltrating lymphocytes isolated from a melanoma patient. This unusual antigenic peptide is made of two noncontiguous tyrosinase fragments that are spliced together in the reverse order. In addition, it contains two aspartate residues that replace the asparagines encoded in the tyrosinase sequence. We confirmed that this peptide is naturally presented at the surface of melanoma cells, and we showed that its processing sequentially requires translation of tyrosinase into the endoplasmic reticulum and its retrotranslocation into the cytosol, where deglycosylation of the two asparagines by peptide-N-glycanase turns them into aspartates by deamidation. This process is followed by cleavage and splicing of the appropriate fragments by the standard proteasome and additional transport of the resulting peptide into the endoplasmic reticulum through the transporter associated with antigen processing (TAP).

PMID:
21670269
PMCID:
PMC3142003
DOI:
10.1073/pnas.1101892108
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center