Send to

Choose Destination
Proc Natl Acad Sci U S A. 1990 Aug;87(16):6200-3.

Expression of melatonin receptors in arteries involved in thermoregulation.

Author information

Laboratory of Clinical Science, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892.


Melatonin binding sites were localized and characterized in the vasculature of the rat by using the melatonin analogue 2-[125I]iodomelatonin (125I-melatonin) and quantitative in vitro autoradiography. The expression of these sites was restricted to the caudal artery and to the arteries that form the circle of Willis at the base of the brain. The arterial 125I-melatonin binding was stable, saturable, and reversible. Saturation studies revealed that the binding represented a single class of high-affinity binding sites with a dissociation constant (Kd) of 3.4 x 10(-11) M in the anterior cerebral artery and 1.05 x 10(-10) M in the caudal artery. The binding capacities (Bmax) in these arteries were 19 and 15 fmol/mg of protein, respectively. The relative order of potency of indoles for inhibition of 125I-melatonin binding at these sites was typical of a melatonin receptor: 2-iodomelatonin greater than melatonin greater than N-acetylserotonin much much greater than 5-hydroxytryptamine. Norepinephrine-induced contraction of the caudal artery in vitro was significantly prolonged and potentiated by melatonin in a concentration-dependent manner, suggesting that these arterial binding sites are functional melatonin receptors. Neither primary steps in smooth muscle contraction (inositol phospholipid hydrolysis) nor relaxation (adenylate cyclase activation) were affected by melatonin. Melatonin, through its action on the tone of these arteries, may cause circulatory adjustments in these arteries, which are believed to be involved in thermoregulation.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center