Format

Send to

Choose Destination
See comment in PubMed Commons below
Biophys J. 1990 Jul;58(1):69-81.

Kinetics of local anesthetic inhibition of neuronal sodium currents. pH and hydrophobicity dependence.

Author information

1
Anesthesia Research Laboratories, Brigham and Women's Hospital, Boston, Massachusetts 02115.

Abstract

This study assesses the importance of local anesthetic charge and hydrophobicity in determining the rates of binding to and dissociation from neuronal Na channels. Five amide-linked local anesthetics, paired either by similar pKa or hydrophobicity, were chosen for study: lidocaine, two tertiary amine lidocaine homologs, a neutral lidocaine homolog, and bupivacaine. Voltage-clamped nodes of Ranvier from the sciatic nerve of Bufo marinus were exposed to anesthetic externally, and use-dependent ("phasic") block of Na current was observed. Kinetic analysis of binding (blocking) rates was performed using a three parameter, piecewise-exponential binding model. Changes in extracellular pH (pHo) were used to assess the role of drug protonation in determining the rate of onset of, and recovery from, phasic block. For those drugs with pKa's in the range of pHo tested (6.2-10.4), the forward binding rate during a depolarizing pulse increased at higher pH, consistent with an increase in either intracellular or intramembrane concentration of drug. The rate for unbinding during depolarization was independent of pHo. The dissociation rate between pulses also increased at higher pHo. The pHo dependence of the dissociation rate was not consistent with a model in which the cation is trapped relentlessly within a closed channel. Quantitative estimates of dissociation rates show that the cationic form of lidocaine dissociates at a rate of 0.1 s-1 (at 13 degrees C); for neutral lidocaine, the dissociation rate is 7.0 s-1. Furthermore, the apparent pKa of bound local anesthetic was found to be close to the pKa in aqueous solution, but different than the pKa for "free" local anesthetic accessible to the depolarized channel.

PMID:
2166602
PMCID:
PMC1280941
DOI:
10.1016/S0006-3495(90)82354-7
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center