Send to

Choose Destination
Integr Comp Biol. 2009 Oct;49(4):380-92. doi: 10.1093/icb/icp019. Epub 2009 Jun 4.

Hormonal regulation of energy metabolism in insects as a driving force for performance.

Author information

Department of Animal Physiology, University of Bayreuth, 95440 Bayreuth, Germany.


Since all life processes depend on energy, the endocrine control of energy metabolism is one of the driving forces for the performance of an individual. Here, we review the literature on the key players in the endocrine regulation of energy homeostasis in insects, the adipokinetic hormones. These pleiotropic peptides not only control dynamic performance traits (flight, swimming, walking) but also regulatory performance traits (egg production, larval growth, and molting). Adipokinetic hormone is released into the hemolymph during intense muscular activity (flight) and also during apparently less energy-demanding locomotory activities, such as swimming and even walking, and, finally, activates the catabolic enzymes phosphorylase and/or triacylglycerol lipase that mobilize carbohydrates and/or lipids and proline, respectively. At the same time, anabolic processes such as the synthesis of protein, lipid, and glycogen are inhibited. Furthermore, adipokinetic hormones affect locomotory activity via neuromodulatory mechanisms that apparently employ biogenic amines. During oogenesis, it is thought that adipokinetic hormone performs similar tasks, because energetic substrates have to be mobilized and transported from the fat body to the ovaries in order to support oocyte growth. Inhibition of anabolic processes by exogenous adipokinetic hormone results in females that lay fewer and smaller eggs. Much less is known about the role of adipokinetic hormones during larval development and during molting but in this case energy homeostasis has to be tightly regulated as well: in general, during the early phase of a larval instar intake of food prevails and the energy stores of the fat body are established, whereas, prior to the molt, insects stop feeding and mobilize energy stores in the fat body, thereby fueling energy-demanding processes such as the formation of the new cuticle and the emergence from the old one. From the few data available to date, it is clear that adipokinetic hormones are involved in the regulation of these events in larvae.


Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center