Format

Send to

Choose Destination
Integr Comp Biol. 2009 Sep;49(3):215-36. doi: 10.1093/icb/icp045. Epub 2009 Jul 13.

A hassle a day may keep the pathogens away: The fight-or-flight stress response and the augmentation of immune function.

Author information

1
Department of Psychiatry & Behavioral Sciences and Stanford Institute for Immunity, Transplantation, & Infection, Stanford University, Stanford, CA 94305-5135, USA. dhabhar@gmail.com

Abstract

Stress is known to suppress or dysregulate immune function and increase susceptibility to disease. Paradoxically, the short-term fight-or-flight stress response is one of nature's fundamental defense mechanisms that galvanizes the neuroendocrine, cardiovascular, and musculoskeletal systems into action to enable survival. Therefore, it is unlikely that short-term stress would suppress immune function at a time when it may be critically required for survival (e.g., in response to wounding and infection by a predator or aggressor). In fact, studies have shown that stress can enhance immune function under certain conditions. Several factors influence the direction (enhancing versus suppressive) of the effects of stress on immune function: (1) DURATION: acute or short-term stress experienced at the time of activation of an immune response enhances innate and adaptive immune responses. Chronic or long-term stress can suppress or dysregulate immune function. (2) Leukocyte distribution: compartments (e.g., skin), that are enriched with immune cells during acute stress show immuno-enhancement, while those that are depleted of leukocytes (e.g., blood), show immuno-suppression. (3) The differential effects of physiologic versus pharmacologic stress hormones: Endogenous hormones in physiological concentrations can have immuno-enhancing effects. Endogenous hormones at pharmacologic concentrations, and synthetic hormones, are immuno-suppressive. (4) Timing: immuno-enhancement is observed when acute stress is experienced during the early stages of an immune response while immuno-suppression may be observed at late stages. The type of immune response (protective, regulatory/inhibitory, or pathological) that is affected determines whether the effects of stress are ultimately beneficial or harmful for the organism. Arguments based on conservation of energy have been invoked to explain potential adaptive benefits of stress-induced immuno-suppression, but generally do not hold true because most mechanisms for immuno-suppression expend, rather than conserve, energy. We propose that it is important to study, and if possible, to clinically harness, the immuno-enhancing effects of the acute stress response that evolution has finely sculpted as a survival mechanism, just as we study its maladaptive ramifications (chronic stress) that evolution has yet to resolve.

PMID:
21665815
DOI:
10.1093/icb/icp045

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center