Format

Send to

Choose Destination
Ecology. 2011 May;92(5):1137-45.

Microbial and environmental effects on avian egg viability: do tropical mechanisms act in a temperate environment?

Author information

1
Department of Environmental Science, Policy and Management, 137 Mulford Hall, University of California, Berkeley, California 94720-3114, USA. quecher@yahoo.com

Abstract

The viability of freshly laid avian eggs declines after several days of exposure to ambient temperatures above physiological zero, and declines occur faster in tropical than temperate ecosystems. Microbial infection during preincubation exposure has recently been shown as a second cause of egg viability decline in the tropics, but whether microbial processes influence the viability of wild bird eggs in temperate ecosystems is unknown. We determined the microbial load on eggshells, the incidence of microbial penetration of egg contents, and changes in the viability of wild bird eggs (Sialia mexicana, Tachycineta bicolor, Tachycineta thalassina) experimentally exposed to temperate-zone ambient conditions in situ in a mediterranean climate in northern California. Initial microbial loads on eggshells were generally low, although they were significantly higher on eggs laid in old boxes than in new boxes. Eggshell microbial loads did not increase with exposure to ambient conditions, were not reduced by twice-daily disinfection with alcohol, and were unaffected by parental incubation. The rate of microbial penetration into egg contents was low and unaffected by the duration of exposure. Nevertheless, egg viability declined very gradually and significantly with exposure duration, and the rate of decline differed among species. In contrast to studies performed in the tropics, we found little evidence that temperature or microbial mechanisms of egg viability decline were important at our temperate-zone site; neither temperatures above physiological zero nor alcohol disinfection was significantly related to hatching success. Delaying the onset of incubation until the penultimate or last egg of a clutch at our study site may maintain hatching synchrony without a large trade-off in egg viability. These results provide insight into the environmental mechanisms that may be responsible for large-scale latitudinal patterns in avian clutch size and hatching asynchrony.

PMID:
21661574
DOI:
10.1890/10-0986.1
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center