Send to

Choose Destination
Adv Exp Med Biol. 2011;712:1-14. doi: 10.1007/978-1-4419-8414-2_1.

Papain-like proteases of Staphylococcus aureus.

Author information

Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.


Staphylococcus aureus remains one of the major humanpathogens, causing a number of diverse infections. the growing antibiotic resistance, including vancomycin and methicilin-resistant strains raises the special interest in virulence mechanism of this pathogen. among a number of extracellular virulence factors, S. aureus secretes several proteases of three catalytic classes-metallo, serine and papain-like cysteine proteases. the expression of proteolytic enzymes is strictly controlled by global regulators of virulence factors expression agr and sar and proteases take a role in a phenotype change in postlogarithmic phase of growth. the staphylococcal proteases are secreted as proenzymes and undergo activation in a cascade manner. Staphopains, two cysteine, papain-like proteases of S. aureus are both approximately 20 kDa proteins that have almost identical three-dimensional structures, despite sharing limited primary sequence identity. although staphopain a displays activity similar to cathepsins, recognising hydrophobic residues at P2 position and large charged residues at P1, staphopain B differs significantly, showing significant preference towards β-branched residues at P2 and accepting only small, neutral residues at the P1 position. there is limited data available on the virulence potential of staphopains in in vivo models. However, in vitro experiments have demonstrated a very broad activity of these enzymes, including destruction of connective tissue, disturbance of clotting and kinin systems and direct interaction with host immune cells. Staphopain genes in various staphylococci species are regularly followed by a gene encoding an extremely specific inhibitor of the respective staphopain. This pattern is conserved across species and it is believed that inhibitors (staphostatins) protect the cytoplasm of the cell from premature activation of staphopains during protein folding. Notably, production and activity of staphopains is controlled on each level, from gene expression, through presence of specific inhibitors in cytoplasm, to the cascade-like activation in extracellular environment. Since these systems are highly conserved, this points to the importance of these proteases in the survival and/or pathogenicity of S. aureus.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center