Send to

Choose Destination
Eur Psychiatry. 2012 Nov;27(8):605-11. doi: 10.1016/j.eurpsy.2011.04.001. Epub 2011 Jun 11.

A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps.

Author information

Department of psychosis Studies, institute of psychiatry, King's College London, P.O. 69, London, SE5 8AF, UK.


Meta-analyses are essential to summarize the results of the growing number of neuroimaging studies in psychiatry, neurology and allied disciplines. Image-based meta-analyses use full image information (i.e. the statistical parametric maps) and well-established statistics, but images are rarely available making them highly unfeasible. Peak-probability meta-analyses such as activation likelihood estimation (ALE) or multilevel kernel density analysis (MKDA) are more feasible as they only need reported peak coordinates. Signed-differences methods, such as signed differential mapping (SDM) build upon the positive features of existing peak-probability methods and enable meta-analyses of studies comparing patients with controls. In this paper we present a new version of SDM, named Effect Size SDM (ES-SDM), which enables the combination of statistical parametric maps and peak coordinates and uses well-established statistics. We validated the new method by comparing the results of an ES-SDM meta-analysis of studies on the brain response to fearful faces with the results of a pooled analysis of the original individual data. The results showed that ES-SDM is a valid and reliable coordinate-based method, whose performance might be additionally increased by including statistical parametric maps. We anticipate that ES-SDM will be a helpful tool for researchers in the fields of psychiatry, neurology and allied disciplines.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center