Send to

Choose Destination
See comment in PubMed Commons below
Hum Mol Genet. 2011 Sep 1;20(17):3424-36. doi: 10.1093/hmg/ddr251. Epub 2011 Jun 8.

A Drosophila model of the neurodegenerative disease SCA17 reveals a role of RBP-J/Su(H) in modulating the pathological outcome.

Author information

  • 1Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, Center of Developmental Biology and Genetics, College of Life Sciences, Peking University, Beijing 100871, PR China.


Expanded polyglutamine (polyQ) tract in the human TATA-box-binding protein (hTBP) causes the neurodegenerative disease spinocerebellar ataxia 17 (SCA17). To investigate the pathological effects of polyQ expansion, we established a SCA17 model in Drosophila. Similar to SCA17 patients, transgenic flies expressing a mutant hTBP protein with an expanded polyQ tract (hTBP80Q) exhibit progressive neurodegeneration, late-onset locomotor impairment and shortened lifespan. Microarray analysis reveals that hTBP80Q causes widespread and time-dependent transcriptional dysregulation in Drosophila. In a candidate screen for genetic modifiers, we identified RBP-J/Su(H), a transcription factor that contains Q/N-rich domains and participates in Notch signaling. Knockdown of Su(H) by RNAi further enhances hTBP80Q-induced eye defects, whereas overexpression of Su(H) suppresses such defects. While the Su(H) transcript level is not significantly altered in hTBP80Q-expressing flies, genes that contain Su(H)-binding sites are among those that are dysregulated. We further show that hTBP80Q interacts more efficiently with Su(H) than wild-type hTBP, suggesting that a reduction in the fraction of Su(H) available for its normal cellular functions contributes to hTBP80Q-induced phenotypes. While the Notch signaling pathway has been implicated in several neurological disorders, our study suggests a possibility that the activity of its nuclear component RBP-J/Su(H) may modulate the pathological progression in SCA17 patients.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center