Send to

Choose Destination
Am J Bot. 2004 Nov;91(11):1846-62. doi: 10.3732/ajb.91.11.1846.

A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family.

Author information

School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501 USA;


Phylogenetic analysis of 330 plastid matK gene sequences, representing 235 genera from 37 of 39 tribes, and four outgroup taxa from eurosids I supports many well-resolved subclades within the Leguminosae. These results are generally consistent with those derived from other plastid sequence data (rbcL and trnL), but show greater resolution and clade support overall. In particular, the monophyly of subfamily Papilionoideae and at least seven major subclades are well-supported by bootstrap and Bayesian credibility values. These subclades are informally recognized as the Cladrastis clade, genistoid sensu lato, dalbergioid sensu lato, mirbelioid, millettioid, and robinioid clades, and the inverted-repeat-lacking clade (IRLC). The genistoid clade is expanded to include genera such as Poecilanthe, Cyclolobium, Bowdichia, and Diplotropis and thus contains the vast majority of papilionoids known to produce quinolizidine alkaloids. The dalbergioid clade is expanded to include the tribe Amorpheae. The mirbelioids include the tribes Bossiaeeae and Mirbelieae, with Hypocalypteae as its sister group. The millettioids comprise two major subclades that roughly correspond to the tribes Millettieae and Phaseoleae and represent the only major papilionoid clade marked by a macromorphological apomorphy, pseudoracemose inflorescences. The robinioids are expanded to include Sesbania and members of the tribe Loteae. The IRLC, the most species-rich subclade, is sister to the robinioids. Analysis of the matK data consistently resolves but modestly supports a clade comprising papilionoid taxa that accumulate canavanine in the seeds. This suggests a single origin for the biosynthesis of this most commonly produced of the nonprotein amino acids in legumes.

Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center