Send to

Choose Destination
See comment in PubMed Commons below
Exp Lung Res. 2011 Aug;37(6):319-26. doi: 10.3109/01902148.2011.569968. Epub 2011 Jun 7.

Reduced surface toll-like receptor-4 expression and absent interferon-γ-inducible protein-10 induction in cystic fibrosis airway cells.

Author information

  • 1Department of Pulmonary Medicine, Philipps-University Marburg, Marburg, Germany.


ABSTRACT As part of the innate and adaptive immune system, airway epithelial cells secrete proinflammatory cytokines after activation of Toll-like receptors (TLRs) by pathogens. Nevertheless, cystic fibrosis (CF) airways are chronically infected with Pseudomonas aeruginosa, suggesting a modified immune response in CF. The authors have shown that in CF bronchial epithelial cells, a reduced surface expression of TLR-4 causes a diminished interleukin (IL)-8 and IL-6 response upon lipopolysaccharide (LPS) stimulation. However, there is no information regarding activation of the MyD88 (myeloid differentiation primary response gene 88)-independent TLR-4 signaling pathway by LPS, which results in the activation of adaptive immune responses by secretion of the T cell-recruiting chemokine interferon-γ-inducible protein (IP)-10. Therefore, the authors investigated the induction of IP-10 in CF bronchial epithelial cell line CFBE41o- and its CFTR-corrected isotype under well-differentiating conditions. TLR-4 surface expression was significantly reduced in CFBE41o- by a factor of 2, compared to the CFTR-corrected cells. In CFTR-corrected cells, stimulation with LPS increased IP-10 secretion. Incubating cells with siRNA directed against TLR-4 inhibited the LPS stimulated increase of IP-10 in CFTR-corrected cells. The reduced TLR-4 surface expression in CF cells causes the loss of induction of IP-10 by LPS. This could compromise adaptive immune responses in CF due to a reduced T-cell recruitment.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis
    Loading ...
    Support Center