Format

Send to

Choose Destination
Magn Reson Imaging. 2011 Oct;29(8):1138-44. doi: 10.1016/j.mri.2011.05.001. Epub 2011 Jun 8.

Simultaneous acquisition of phosphocreatine and inorganic phosphate images for Pi:PCr ratio mapping using a RARE sequence with chemically selective interleaving.

Author information

1
Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA. rgreenma@bidmc.harvard.edu

Abstract

The ratio of inorganic phosphate to phosphocreatine (Pi:PCr) is a validated marker of mitochondrial function in human muscle. The magnetic resonance imaging rapid acquisition with relaxation enhancement (RARE) pulse sequence can acquire phosphorus-31 ((31)P) images with higher spatial and temporal resolution than traditional spectroscopic methods, which can then be used to create Pi:PCr ratio maps of muscle regions. While the (31)P RARE method produces images that reflect the content of the (31)P metabolites, it has been limited to producing an image of only one chemical shift in a scan. This increases the scan time required to acquire images of multiple chemical shifts as well as the likelihood of generating inaccurate Pi:PCr maps due to gross motion. This work is a preliminary study to demonstrate the feasibility of acquiring Pi and PCr images in a single scan by interleaving Pi and PCr chemical shift acquisitions using a chemically selective radiofrequency excitation pulse. The chemical selectivity of the excitation pulse evaluated and the Pi:PCr maps generated using the interleaved Pi and PCr acquisition method with the subject at rest and during exercise are compared to those generated using separate Pi and PCr acquisition scans. A paired t test indicated that the resulting Pi:PCr ratios for the exercised forearm muscle regions were not significantly different between the separate Pi and PCr acquisition method (3.18±1.53) (mean±standard deviation) and the interleaved acquisition method (3.41±1.66). This work demonstrates the feasibility of creating Pi:PCr ratio maps in human muscle with Pi and PCr images acquired simultaneously by interleaving between the Pi and PCr resonances in a single scan.

PMID:
21641744
PMCID:
PMC3172363
DOI:
10.1016/j.mri.2011.05.001
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center